Voltlog #266 – How To Check If Your Raspberry Pi 4 Is Throttling CPU

Welcome to a new Voltlog, today my raspberry pi 4 is again in the spotlight because I want to show you the different scenarios where the board could be throttling down the CPU frequency and how you can identify those. Because it might be a case where your raspberry pi is running slow on a particular task and you don’t know why because there is no built-in mechanism to let you know when the board is throttling down. There are logs which you can check but let’s be honest, few people actually check the logs for something like this.

Throttling of the cpu frequency occurs for good reasons, to protect the board or the cpu from overheating or to prevent any errors from occurring in the case of an under-voltage scenario which may lead to data loss or corruption. Luckily there is a way to check if your system is under one of these conditions, you can run this command on your raspberry pi.

Voltlog #264 – Passive Heatsink Cooling For The Raspberry Pi 4

Welcome to a new Voltlog, here is my raspberry pi 4 which I got a few months ago when they released it and if you have one you might have noticed it gets quite hot especially when it has to do some processing. This newer processor, will get hot quick and the board alone cannot cope with all of this heat so what does it do? Well when the CPU temperature reaches 80 degrees Celsius it will start throttling down the CPU as a way of protecting itself from overheating and this will result in a loss of performance.

The Raspberry Pi 4 has a 1.5GHz quad-core 64-bit Arm Cortex-A72 CPU, that’s roughly three times the performance of the raspberry pi 3 cpu. That inevitably generates more heat. In the original plastic case just sitting idle, connected to a network, doing pretty much nothing, the raspberry pi4 when compared to a raspberry pi3 runs about 12 degrees hotter.

Voltlog #195 – Is Thermal Adhesive Tape Any Good?

Welcome to a new voltlog, today we’re gonna be testing and comparing thermally conductive double sided tape to other solutions like thermally conductive adhesive, silicone pads, or even regular double sided tape to see how effective these solutions are for transferring heat between an IC and the heatsink.

To produce the heat I’m gonna use a small analog electronic load circuit, which will be set for a certain current let’s say 200mA and in theory should produce the same amount of heat for each run. Then we’re going to insert the different type of materials between the heatsink and the IC and we’re gonna measure the temperature of the IC and the temperature of the heatsink. As you can see I have a thermocouple glued to one side of the heatsink with thermally conductive adhesive and another thermocouple glued to this TO247 style transistor that’s producing the heat.

I don’t have a particularly good way of testing this but my plan is to heat the transistor to a stable temperature while the heatsink is kept at room temperature. Then I’m gonna connect the two bodies and measure the time it takes for the heatsink to reach the same temperature or a certain value, close enough. Then repeat the test with a different material and compare the values. If that time span is shorter or longer will depend on the thermal resistance between the body of the transistor and the heatsink and that is highly dependent on the material used between them.