Voltlog #268 – RaspberryPi 10 Inch IPS HDMI Monitor 2560×1600 2K

Welcome to a new Voltlog, it’s product review time again, this time we’re taking a closer look at a 10 inch monitor with hdmi input. This is the box it comes in, the monitor has a resolution of 2560×1600, that’s about 2K resolution in the scheme of things, 300 pixels per inch density, 16:10 aspect ratio which I’m a fan of. My desktop monitor is also 16:10 and it works so much better for everyday activities but especially if you are doing any CAD design work. It’s an IPS panel so we should have good brightness, contrast and colors, it’s rated at 400 candela per sq meter. We also get built-in speakers and the HDMI supports video & audio so you should be able to get video and sound through the HDMI cable and that’s useful because we have built-in speakers on the monitor itself.

Voltlog #266 – How To Check If Your Raspberry Pi 4 Is Throttling CPU

Welcome to a new Voltlog, today my raspberry pi 4 is again in the spotlight because I want to show you the different scenarios where the board could be throttling down the CPU frequency and how you can identify those. Because it might be a case where your raspberry pi is running slow on a particular task and you don’t know why because there is no built-in mechanism to let you know when the board is throttling down. There are logs which you can check but let’s be honest, few people actually check the logs for something like this.

Throttling of the cpu frequency occurs for good reasons, to protect the board or the cpu from overheating or to prevent any errors from occurring in the case of an under-voltage scenario which may lead to data loss or corruption. Luckily there is a way to check if your system is under one of these conditions, you can run this command on your raspberry pi.

Voltlog #264 – Passive Heatsink Cooling For The Raspberry Pi 4

Welcome to a new Voltlog, here is my raspberry pi 4 which I got a few months ago when they released it and if you have one you might have noticed it gets quite hot especially when it has to do some processing. This newer processor, will get hot quick and the board alone cannot cope with all of this heat so what does it do? Well when the CPU temperature reaches 80 degrees Celsius it will start throttling down the CPU as a way of protecting itself from overheating and this will result in a loss of performance.

The Raspberry Pi 4 has a 1.5GHz quad-core 64-bit Arm Cortex-A72 CPU, that’s roughly three times the performance of the raspberry pi 3 cpu. That inevitably generates more heat. In the original plastic case just sitting idle, connected to a network, doing pretty much nothing, the raspberry pi4 when compared to a raspberry pi3 runs about 12 degrees hotter.