Voltlog #265 – FT232H USB to JTAG/I2C/SPI Interface With Python & PyFtdi

Welcome to a new voltlog, today we’re going to be talking about this little board which I designed and assembled myself, it’s a breakout module for the FTDI FT232H which is a usb to serial converter but with a nice twist. This particular chip from FTDI has the built-in Multi-Protocol Synchronous Serial Engine (MPSSE short) which allows you to run a variety of synchronous serial protocols like JTAG, I2C, SPI or simple bit-banging of IOs. You can imagine it can be really useful to be able to interface with a sensor over I2C or SPI straight from your computer over USB through this interface. You wouldn’t need an arduino or other controller in the middle if you plan to do some data acquisition for example.

Voltlog #262 – Is This The Future of Our Hobby?

To be honest I didn’t think we were going to have services like these available so cheap so fast. I mean yes I know pcb prices have been so low in the past couple of years that it no longer makes sense to etch your own PCBs, unless you are in a big hurry. But having smt assembly service so cheap? Soon enough it would not make sense to hand assemble these boards because it would be equally cheap to have them assembled at JLCPCB

Voltlog #260 – How do you test usb to serial converters? (CP2103 vs CH340E vs FT232RL)

Welcome to a new Voltlog, today we’re comparing a few different serial to usb adapters and the discussion started ever since I showed the CH340E breakout board I designed in voltlog #249. People wanted to know if this CH340E affordable chip would perform similar to the well known FTDI or Silicon labs chips, and I’m thinking at high throughput and reliability here, the kind of application where you are sending lots of data, fast and you need it to be transferred reliably.

So today I’m going to compare the CH340E with a CP2103, and the FT232RL. I wasn’t sure what measurements to take and how to test these but I devised 2 testing methods.